Gaining Audit Superpowers with BI Exploratory Data Visualizations

CRYSTALLIZE

ANALYTIC ${ }^{\circ}$

Webinar Mechanics

O The Audio Options menu is in the lower-left portion of the window.
O Please submit all questions in the Q\&A panel. Time-permitting, questions received will be answered at the end of the session.
O Please submit all support/other questions in the Chat panel.
O After the event, a follow-up email will be sent including a link to the recording of today's session and Q\&A.

Who Is eprentise?

In 2007 eprentise was founded on its original product, FlexField
> Enables customers to make unprecedented changes to their financial chart of accounts while maintaining transactional history and data integrity.

Transformation to Optimization

One-time usage to subscription model

In 2020 we began expanding to new markets with our C Collection analytics suite, and our Audit Automation software

> C Collection analytics provides transparency and identifies potential problem areas with transactional data. This allows users to reduce costs, leverage opportunities across the enterprise, improve business processes, and increase the confidence level of the users in their data, processes, and operations.

> Automated Audit provides internal auditors and the finance team with drill-down data from a balance sheet report into the transaction-level detail. The software covers hundreds of substantive procedures for the entire enterprise domain and builds in consistent audit processes and workflows across the organization.

Objectives

After completion of this presentation, you will be able to:

O Objective 1: Understand the difference between explanatory charts and graphs and exploratory data visualizations
O Objective 2: Learn five exploratory data analytics for auditors using either Power BI or Excel

O Objective 3: Understand how to follow up on data analytics results to develop clear and well documented audit findings

Meet the Speakers

Harrison Figura

- Sr. Product Director \& Director of Delivery Services
- eprentise

Crystallize Analytics

Brian Lewis

- CPA \& CIA

President \& CFO
eprentise
Crystallize Analytics

Agenda

DExplanatory and Exploratory Data
Visualizations
■Types of Exploratory Data Visualization and the Data Best Used

■Five Types of Exploratory Data Visualizations
> Linear Regressions
> Variances
> Benford's Law
> Invoice Number Format Test
> Other Pattern Identifications

INTERNATIONAL STANDARDS FOR THE PROFESSIONAL PRACTICE OF INTERNAL AUDITING (STANDARDS)

1210 - Proficiency

Internal auditors must possess the knowledge, skills, and other competencies needed to perform their individual responsibilities. The internal audit activity collectively must possess or obtain the knowledge, skills, and other competencies needed to perform its responsibilities.

Interpretation:

Proficiency is a collective term that refers to the knowledge, skills, and other competencies required of internal auditors to effectively carry out their professional responsibilities. It encompasses consideration of current activities, trends, and emerging issues, to enable relevant advice and recommendations. Internal auditors are encouraged to demonstrate their proficiency by obtaining appropriate professional certifications and qualifications, such as the Certified Internal Auditor designation and other designations offered by The Institute of Internal Auditors and other appropriate professional organizations.
$1210 . \mathrm{A1}$ - The chief audit executive must obtain competent advice and assistance if the internal auditors lack the knowledge, skills, or other competencies needed to perform all or part of the engagement.
1210.A2 - Internal auditors must have sufficient knowledge to evaluate the risk of fraud and the manner in which it is managed by the organization, but are not expected to have the expertise of a person whose primary responsibility is detecting and investigating fraud.
1210.A3 - Internal auditors must have sufficient knowledge of key information technology risks and controls and available technology-based audit techniques to perform their assigned work. However, not all internal auditors are expected to have the expertise of an internal auditor whose primary responsibility is information technology auditing.
$1210 . C 1$ - The chief audit executive must decline the consulting engagement or obtain competent advice and assistance if the internal auditors lack the knowledge, skills, or other competencies needed to perform all or part of the engagement.

Data Visualization: A Working Definition

\square What is a Data Visualization

 >"Data visualization is a way to represent information graphically, highlighting patterns and trends in data and helping the reader to achieve quick insights."
Explanatory versus Exploratory Visuals

- Explanatory Visuals
> Used to communicate the results of your analyses
\square Exploratory Visuals
> Used when you want or need to explore data to find insights. You use these types of visualizations to help better understand your underlying data

Explanatory Visual Example

Audit Results - Audit Summary	Audit Results - Compliance Summary			
		Passed	Manual Check	Failed
	Check Count	85	35	70
	Check Ratio	38\%	21\%	41\%
	System Count	1	1	1
	System Ratio	100\%	100\%	100\%
Audit Results - Audit Check Subnet Summary	Audit Results - Top 50 Manual Audit Checks			
- Info $=$ Medium $=$ High	Plugin ID	Name	Severity	Host Total
		Nante 01	Medium	1
60		Name 02	Medium	1
50		Neme 03	Medium	1
40	D04	Name 04	Medium	1
30	11005	Name 05	Medium	1
20	1008	Name 08	Medium	1
10	D0\%	Name 07	Medium	1

Simple Exploratory Visual Example

Sales Versus Inventory Item Purchases

Power of Exploratory Data Visualizations

- Exploratory data visualizations can allow an auditor to quickly identify indicators of audit concern
- Frequently, these indicators are not easily identified using traditional audit methods
- Properly applied, exploratory data visualizations can give an auditor super intuition to changes and arising audit risks

Five Exploratory Data Visualization Techniques to Begin Using Today

- Regression Analysis
- Variance Identification
- Benford's Law
- Invoice Number Format Test
- Other Pattern Identifications

Poll Question 1

If you would like to receive CPE credit for today's event, you must respond to all polling questions.

Browsers with advanced security may prevent the poll question from popping up - if you are experiencing any difficulties, or have any questions please contact our panel via the 'chat' function and we will assist you.

Regression Analysis

What is Regression Analysis?

\square Regression Analysis is a mathematical method to test whether what is expected to occur does, in fact, occur.

Linear regression

In this scatter diagram, umbrellas sold is shown to be dependent on rainfall. The red line is the linear regression showing what the expected relationship is and the blue dots are what occurred.

Examples That Might Be Tested by Regression

\square Inventory purchases to cost of sales

- Commissions paid to sales
\square Raw materials used to complete finished goods
- Credit memos to returned goods \square Marketing spend to sales

Inventory Purchases to Cost of Goods Sold - Linear Regression Example

	Base Year		Current Year	
	2019		2020	
	COGS (X)	Purchases (Y)	COGS (X)	Purchases (Y)
January	$\$ 19,990,514.69$	$\$ 16,650,784.52$	$\$ 16,064,740.21$	$\$ 12,810,824.89$
February	$\$ 18,084,414.84$	$\$ 13,976,722.54$	$\$ 13,098,365.32$	$\$ 8,372,842.39$
March	$\$ 16,103,220.39$	$\$ 12,650,158.91$	$\$ 12,167,967.59$	$\$ 13,063,172.81$
April	$\$ 14,482,269.00$	$\$ 12,290,167.26$	$\$ 11,122,776.49$	$\$ 9,857,154.13$
May	$\$ 16,312,647.51$	$\$ 12,678,991.85$	$\$ 11,908,662.13$	$\$ 10,185,168.61$
June	$\$ 23,912,283.29$	$\$ 17,352,819.24$	$\$ 17,823,022.79$	$\$ 14,185,168.61$
July	$\$ 13,311,477.08$	$\$ 11,738,852.23$	$\$ 10,105,176.22$	$\$ 8,532,867.75$
August	$\$ 13,010,816.14$	$\$ 10,857,196.46$	$\$ 10,357,158.95$	$\$ 7,861,511.38$
September	$\$ 14,102,367.91$	$\$ 10,147,188.10$	$\$ 10,604,415.07$	$\$ 8,456,304.54$
October	$\$ 15,324,067.06$	$\$ 12,561,418.31$	$\$ 11,382,339.85$	$\$ 10,585,900.20$
November	$\$ 30,142,373.62$	$\$ 22,993,529.25$	$\$ 20,454,824.63$	$\$ 11,760,071.93$
December	$\$ 15,806,283.27$	$\$ 11,961,852.72$	$\$ 12,199,603.62$	$\$ 16,244,868.82$
Total	$\$ 210,582,734.80$	$\$ 165,859,681.39$	$\$ 157,289,052.87$	$\$ 132,707,515.70$
Purchases \% of				
COGS				

Inventory Purchases to Cost of Goods Sold - Linear Regression Example

2020 Cost of Goods Sold (COGS) Line Fit Plot

Steps to Linear Regression

1. Develop a hypothesis. For example, "Inventory Purchases should increase or decrease in direct relationship to cost of sales"
2. Gather data for both prior and current periods (e.g., cost of sales and inventory item purchases for the current year and the prior year)
3. Test the hypothesis for the prior (base) period(s) using the Excel® Data Analysis Add-In Regression Tool
4. Conclude on the hypothesis- is there actually a relationship between the values?
5. Test the current period and analyze the results
6. Follow up on significant differences between predicted values (predicted purchases) and actual values (actual purchases)
7. Present the results (Audit Findings)

Step 7. Develop a Hypothesis

a Inventory purchases should, over a period of time, be dependent on cost of sales
$>$ Inventory purchases are your dependent variable (Y) - inventory purchases are ultimately determined by sales (cost of sales)
$>$ Cost of sales are your independent variable (X) - sales (cost of sales) cause inventory purchases

Step 2. Gather Data

Obtain a data file for cost of sales and

 inventory purchases for the base year (2019) and the current year (2020)| | Base Year | | Current Year | |
| :--- | ---: | ---: | :--- | ---: |
| | 2019 | | 2020 | |
| | COGS (X) | Purchases (Y) | COGS (X) | Purchases (Y) |
| January | $\$ 19,990,514.69$ | $\$ 16,650,784.52$ | $\$ 16,064,740.21$ | $\$ 12,810,824.89$ |
| February | $\$ 18,084,414.84$ | $\$ 13,976,722.54$ | $\$ 13,098,365.32$ | $\$ 8,372,842.39$ |
| March | $\$ 16,103,220.39$ | $\$ 12,650,158.91$ | $\$ 12,167,967.59$ | $\$ 13,063,172.81$ |
| April | $\$ 14,482,269.00$ | $\$ 12,290,167.26$ | $\$ 11,122,776.49$ | $\$ 9,857,154.13$ |
| May | $\$ 16,312,647.51$ | $\$ 12,678,991.85$ | $\$ 11,908,662.13$ | $\$ 10,185,168.61$ |
| June | $\$ 23,912,283.29$ | $\$ 17,352,819.24$ | $\$ 17,823,022.79$ | $\$ 14,185,168.61$ |
| July | $\$ 13,311,477.08$ | $\$ 11,738,852.23$ | $\$ 10,105,176.22$ | $\$ 8,532,867.75$ |
| August | $\$ 13,010,816.14$ | $\$ 10,857,196.46$ | $\$ 10,357,158.95$ | $\$ 7,861,511.38$ |
| September | $\$ 14,102,367.91$ | $\$ 10,147,188.10$ | $\$ 10,604,415.07$ | $\$ 8,456,304.54$ |
| October | $\$ 15,324,067.06$ | $\$ 12,561,418.31$ | $\$ 11,382,339.85$ | $\$ 10,585,900.20$ |
| November | $\$ 30,142,373.62$ | $\$ 22,993,529.25$ | $\$ 20,454,824.63$ | $\$ 11,760,071.93$ |
| December | $\$ 15,806,283.27$ | $\$ 11,961,852.72$ | $\$ 12,199,603.62$ | $\$ 16,244,868.82$ |
| Total | $\$ 210,582,734.80$ | $\$ 165,859,681.39$ | $\$ 157,289,052.87$ | $\$ 132,707,515.70$ |
| | | | | |
| Purchases \% of | | | | |
| COGS | | | | |

Step 3. Test the Hypothesis (Base Year)

- Select "Data Analysis" and "Regression"

 from the "Data" tab in Excel (you may need to add the Data Analysis Add-In) and input the X (COGS) \& Y (Purchases) ranges

Step 4. Conclude on the Hypothesis (Base Year)

Step 5. Test the Current Period

Step 6. Follow Up on Significant Differences

The relationship of inventory item purchases to cost of sales has changed significantly between 2019 and 2020 indicating potential problems
> Inventory build up above that needed to cover customer sales?
> Incorrect sales projection/estimations?

- Errors in reorder points in the supply chain management system?

Step 7. Present the Results

- Condition: What is the problem or issue? What is happening? (A regression result is an indicator of a condition-if it is determined that this is a condition rising to the level of an audit finding, then the regression visual should be included in the audit report as an explanatoryvisual)
- Cause: Why did the condition happen? (From a regression, a variance analysis (see next section) should be conducted to allow drill-down and determination of the periods/transactions of concern and why the problem arose)
- Criteria: How do we know this is a problem? What should be?
- Effect: Why does this condition matter? What is the impact?
- Recommendation: How do we solve the condition?
- Consequence: What is the risk or negative outcome because of the finding?
- Corrective action: What should management do?
- What comes to mind when you hear "Business Intelligence"?

Variance Identification

Variance Identification

\square Macro level tools such as regression analysis allow an auditor to identify changes to a data population, but drilling down into the underlying data to discrete periods is the starting point to understanding what caused the changes (variance)
\square Variance identification is determining what was expected to occur (usually based on prior year information) and what actually occurred

Variance Identification Example

- Using the information obtained from the regression example, a prediction can be made of purchases in the current year compared to actual purchases

	Coefficients
Intercept	1536695.814
COGS	0.700054217

\square The linear equation $(y=m x+b)$ for predicting purchases from COGS is
Purchases = COGS(.700054217)+1536695.814

Coefficient

Variance Identification Example

- Using the information obtained from the regression example, a prediction can be made of purchases in the current year compared to actual purchases

	Coefficients
Intercept	1536695.814
COGS	0.700054217

\square The linear equation $(y=m x+b)$ for predicting purchases from COGS is
Purchases = COGS(.700054217)+1536695.814

Variance /dentification Example

		se Year Rate		2020	
Month	Pre	cted Purchases		ual Purchases	Variance
January	\$	12,782,884.95	\$	12,810,824.89	\$ (27,939.94)
February	\$	10,706,261.70	\$	8,372,842.39	\$ 2,333,419.31
March	\$	10,054,932.84	\$	13,063,172.81	\$ (3,008,239.96)
April	\$	9,323,242.41	\$	9,857,154.13	\$ (533,911.72)
May	\$	9,873,404.96	\$	10,185,168.61	\$ (311,763.65)
June	\$	14,013,778.09	\$	14,976,828.26	\$ (963,050.18)
July	\$	8,610,867.04	\$	8,532,867.75	\$ 77,999.29
August	\$	8,787,268.61	\$	7,861,511.38	\$ 925,757.24
September	\$	8,960,361.31	\$	8,456,304.54	\$ 504,056.77
October	\$	9,504,950.83	\$	10,585,900.20	\$ (1,080,949.36)
November	\$	15,856,182.07	\$	11,760,071.93	\$ 4,096,110.14
December	\$	10,077,079.78	\$	16,244,868.82	\$ (6,167,789.04)
Predicted Purchases $=$ COGS $(\mathbf{0 . 7 0 0 0 5 4 2 1 7 4 5 5 2 4 9)} \mathbf{+ 1 5 3 6 6 9 5 . 8 1 4 1 6 0 2 7 ~}$					

Variance /dentification Example

Actual Inventory Item Purchasesv Predicted Inventory Purchases

Benford's Law

What is Benford's Law?

- "Briefly explained, Benford's Law maintains that the numeral 1 will be the leading digit in a genuine data set of numbers 30.1% of the time; the numeral 2 will be the leading digit 17.6\% of the time; and each subsequent numeral, 3 through 9 , will be the leading digit with decreasing frequency. This expected occurrence of leading digits can be illustrated as shown in the chart 'Benford's Law.'"

$>\quad$ https://www.journalofaccountancy.com/issues/2017/apr/excel-and-benfords-law-to-detect-fraud.html

Benford's Law

Genuine data sets are driven by the tendency to purchase more $\$ 1,000$ items than \$9,000 items. Real world purchases conform closely to the Benford's First Digit Expected Distribution. This is true because it is harder to justify or gain permission to purchase the larger dollar amounts.

Purpose: To Identify
Unusual Data Pattern in AP that May Indicate Manipulation, Errors, or Other Irregularities

What exactly is it looking at?

\square Insurance Bill 1947299
>1 is the first/leading digit
\square Payment Amount Number -8,371
$>$ 8 is the first/leading digit
\square Price of a Small Widget 0.25
$>\underline{2}$ is the first/leading digit

Example Data Sets That Can and Cannot be Tested Using Benford's Law

Valid

Routine, large, real-world distributions that cross numerous orders of magnitude uniformly

- Invoice Amounts
- Routine Payments
- Utility Bills
- Inventory Prices

Invalid

Small, non-routine, distributions that are almost all or entirely within one order of magnitude.

- Human Height
- IQ
- Manual Journal Entries
- Invoice Numbers

Benford's Law Example - Clean Up Data

Within Excel - Remove null values, eliminate the zeros, and negative signs

Benford's Law - Extract First Characters

Within Power Query under the Add Column ribbon, choose to Extract the First

 Characters

Benford's Law - Sort

Change the new column ("First Characters") to a Whole Number

\square	1.2 Invoice Amount Without Nulls, Zero's, or Negatives $\quad \square$	$\mathrm{A}_{\mathrm{C}}^{\mathrm{B}}$ First Characters
null	6836.48	6
null	6743.75	6
null	6743.75	6
null	6743.75	6

Sort your First Characters data in ascending order

	A_{C}^{B} First Characters	
8	1	
2	1	
3	1	
5	1	
2	1	
5	1	

Benford's Law - Transform Into a Table

Right Click on your First Characters Column and select "Add as New Query"

Transform your list of First

 Characters into a Table

f_{x} = Table.FromList(\#"Firs

Benford's Law - Group By

Right click on your data and choose "Group By"

You should see the first digits in Columnt and the count of their occurrence in the Count column

NOTE: Ensure your values are occurring in ascending order within Column1

Benford's Law - Example

Establish a relationship by adding an index column on your Count column starting "From 1". This will become your X axis

Benford's Law - Cumulative Sum

Add a custom column to calculate the cumulative sum of the Count column (DAX below)

List.Sum(List.Range(\#"Added Index"[Count],0,[Index]))

Benford's Law - Determine Percentage

Add a custom column to calculate the percentage of each first digits occurrence (DAX below)

Learn about Power Query formulas
\checkmark No syntax errors have been detected.

OK
Cancel
[Count]/List.Sum(\#"Added Custom"[Count])

This will become a column within your graph

Benford's Law - Add Benford's Percentages

Select "Column From Examples" and manually enter Benford's Law Percentages

E Add Column From Examples
Enter sample values to create a new column (Ctrl+Enter to apply).

This will become a reference column within your graph

Benford's Law - Ready to Graph!

Once your data has been added you are ready to update your column names and Apply Changes

Benford＇s Law－The Fun Part

Build visual

＝तो 合

囲 R Py E゚ 唱 \square 包 皆

X－axis	
Index	$\vee \times$
Y－axis	
Sum of Benford＇s \％	$\vee \times$
Sum of 1st Number of Invoice Amount $\%$	$\vee \times$

－Sum of Benford＇s \％－Sum of 1st Number of Invoice Amount \％

First Character

Poll Question 2

If you would like to receive CPE credit for today's event, you must respond to all polling questions.

Browsers with advanced security may prevent the poll question from popping up - if you are experiencing any difficulties, or have any questions please contact our panel via the 'chat' function and we will assist you.

Invoice Number Format Test

Invoice Number Format Test

\square Invoice Number Format Test
> Caused primarily by the invoice process urgency, one of the more common ways that invoices and payment are duplicated is altering, prefixing, or suffixing invoice number to circumvent the system control that prevents a duplicate invoice number for the same vendor.
> Invoice numbers that are in a different format, length, or with unusual characters may indicate a fraudulent invoicing scheme.

Invoice Number Format Test

\square This test convert invoice numbers to a code where letters become " A ", numbers become "\#", and hyphens are preserved. This allows an automated audit routine to compare and identify the unusual invoice \# format.

	Trading
1	Partner
1157	Staples
1158	Staples
1159	Staples
1160	Staples
1161	Staples
1162	Staples
1163	Staples
1164	Staples
1165	Staples
1166	Staples
1167	Staples
1168	Staples
1169	Staples

Invoice Number Format Test - Excel

- Formula Explanation: If each digit, taken one at a time is a number ISNUMBER() it is replaced with a " $\#$ ", if it is not a number, it is replaced with an " A ", and if it is a hyphen, it remains a hyphen.
=IF(ISNUMBER(VALUE(MID(\$K23,O\$2,1))),"\#",IF(MID(\$K23,O\$2,1)="-","-",IF(O\$2>LEN(\$K23),"","A")))

4	K	M	0	P	Q	R	S	T	U	V
1			Digits							
2	Invoice Num	Invoice Number Format	1	2	3	4	5	6	7	8
20	W36715	A\#\#\#\#\#	A	\#	\#	\#	\#	\#		
21	W35365	A\#\#\#\#\#	A	\#	\#	\#	\#	\#		
22	W37645	A\#\#\#\#\#	A	\#	\#	\#	\#	\#		
23	W11625-2	A\#\#\#\#\#-\#	A	\#	\#	\#	\#	\#	-	\#
24	W38369	A\#\#\#\#\#	A	\#	\#	\#	\#	\#		
25	W36908	A\#\#\#\#\#	A	\#	\#	\#	\#	\#		
26	W36684	=IF(ISNUMBER	ALUE(MID(\$	K23,0\$2,1))), "\#", IF(M	IID(\$K23,0	\$2,1)="-","	-", IF 0 O $2>$ L	LEN(\$K23),"	"I', "A")))
27	W36201	A\#\#\#\#\#	A	\#	\#	\#	\#	\#		

Invoice Number Format Test - Assemble Your Data

Invoice Number Format Test - Import

Import your data
 Add a Matrix and Clustered Column Chart

Invoice Number Format Test - Populate Your Matrix

		Vendor Name	Sum of Invoice Amount	Sum of Invoice Amount Paid	Count of Invoice Number Format	First Invoice Number format
		\pm Advanced Network Devices	598160	598160		AAA\#\#\#\#\#\#
		\# Allied Manufacturing	197879	197879		AAA-\#\#\#\#-\#\#\#\#\#\#
		- Consolidated Supplies	58030	56106		2 AAA \#\#\#\#\#\#
		\pm Office Supplies, Inc.	63062	63062		AAA\#\#\#\#\#\#
		- American Telephone and Telegraph	348570	348570		A.A.A\#\#\#\#\#
		\pm Building Management Inc.	315390	315390		AAA.\#\#\#\#\#\#
Rows		\pm Eastern Industrial Products	18473000	0		1 AAA-\#\#\#\#-\#\#\#\#\#\#
		\pm General Electric	108186	108186		1 AAA-\#\#\#\#-\#\#\#\#\#\#
Vendor Name	$\checkmark \times$	\pm Staples	216535	216535		AAA-\#\#\#\#-\#\#\#\#\#\#
Invoice Number	$\checkmark \times$	- Star Gate Ltd	43610	43610		1 AAA-\#\#\#\#-\#\#\#\#\#\#
		- TT Services	3611550	3611550		AAA-\#\#\#\#-\#\#\#\#\#\#
Columns		- United Parcel Service	125460	125460		A.A.A.\#\#\#\#\#
Add data fields here		Total	24159432	5684508		AAA\#\#\#\#\#
Values						
Sum of Invoice Amount	$\checkmark \times$	/endor Name	Sum of Invoice Amount Sum of Invoice Amount Paid		Count of Invoice Number Format	First Invoice Number format
Sum of Invoice Amount Paid	$\checkmark \times$	3 Advanced Network Devices	598160	598160	3	AAA\#\#\#\#\#
Count of Invoice Number Format	$\checkmark \times$	AND111407	90720	90720		AAA.\#\#\#\#\#
First Invoice Number Format	$\checkmark \times$	AND111607-0	90720	90720	1	AAA\#\#\#\#\#\#-A
		AND1125072	90720	90720	1	AAA\#\#\#\#\#\#\#
		AND120507	81500	81500	1	AAA\#\#\#\#\#\#
		AND121407	81500	81500	1	AAA\#\#\#\#\#\#
		AND121907	81500	81500	1	AAA\#\#\#\#\#\#
		AND122607	81500	81500	1	AAA.\#\#\#\#\#\#
		\pm Allied Manufacturing	197879	197879	2	AAA-\#\#\#\#-\#\#\#\#\#\#
		(Consolidated Supplies	58030	56106	2	AAA\#\#\#\#\#
		\pm Office Supplies, Inc.	63062	63062	2	AAA\#\#\#\#\#\#
		\pm American Telephone and Telegraph	348570	348570	1	AAA\#\#\#\#\#
		```~T Buildino Manaoement Inc Total```	$\begin{array}{r} 315390 \\ 24159432 \end{array}$	$\begin{array}{r} 315390 \\ 5684508 \end{array}$	1	AAA \#\#\#\#\#\# AAA\#\#\#\#\#\#

## Invoice Number Format Test - Add Some Pizzazz



Background color - Background color

Values only $\checkmark$


Vendor Name

- Advanced Network Devices
Allied Manufacturing
- Consolidated Supplies
Office Supplies, Inc.
American Telephone and Telegraph
Building Management Inc.
Eastern Industrial Products
General Electric
Staples Gate Ltd
TT Services
United Parcel Service
Total

Sum of Invoice Amount: Sum of Invoice Amount Paid Count of Invoice Number Format. First Invoice Number Format

598160	598160
197879	197879
58030	56106
63062	63062
348570	348570
315390	315390
18473000	0
108186	108186
216535	216535
43610	43610
3611550	3611550
125460	125460
24159432	5684508



## Invoice Number Format Test－Populate Clustered Column Chart



## Invoice Number Format Test - Add Some Pizzazz



Visual General

Columns
$\vee$ Colors
Default
$\square \vee f x$

Show all
Default color - Columns - Colors
Format style

Gradient	$\checkmark$

What field should we base this on?
Count of Invoice Number Format $\quad \vee$
Minimum
Lowest value

Enter a value
$\checkmark$ Add a middle color

How should we format empty values?

As zero $\quad \vee$
$\checkmark$ Data labels
$\checkmark$ Values
Font

Segoe UI	$\vee$	9
$\mathbf{B}$	$I$	U

Color
Display units
Thousands
$\vee$

Value decimal places
$\square$
Overflow text
Custom label
Field
Sum of Invoice Amount Paid $\quad \times \mid>$

## Invoice Number Format Test

Vendor Name	Sum of Invoice Amount	Sum of Invoice Amount Paid	Count of Invoice Number Format	First Invoice Number Format
[ Advanced Network Devices	598160	598160	3	AAA\#\#\#\#\#\#
\# Allied Manufacturing	197879	197879	2	AAA-\#\#\#\#-\#\#\#\#\#\#
Consolidated Supplies	58030	56106	2	AAA.A\#\#\#\#\#
(1) Office Supplies, Inc.	63062	63062	2	AAA\#\#\#\#\#\#
(1) American Telephone and Telegraph	348570	348570	1	AA,A\#\#\#\#\#\#
\# Building Management Inc.	315390	315390	1	AAA\#\#\#\#\#\#
\# Eastern Industrial Products	18473000	0	1	AAA-\#\#\#\#-\#\#\#\#\#\#
[) General Electric	108186	108186	1	AAA-\#\#\#\#-\#\#\#\#\#\#
[十) Staples	216535	216535	1	AAA-\#\#\#\#-\#\#\#\#\#\#
\# Star Gate Ltd	43610	43610	1	AAA-\#\#\#\#-\#\#\#\#\#\#
\# TT Services	3611550	3611550	1	AAA-\#\#\#\#-\#\#\#\#\#\#
(1) United Parcel Service	125460	125460	1	AAA\#\#\#\#\#\#
Total	24159432	5684508	5	AAA\#\#\#\#\#\#
		Invoice Number Format	Test	

## Count of Invoice Number Format <br> $\square$




Consolidated
Supplies

Office Supplies
Inc.


## Invoice Number Format Test

ndor Name	Sum of Invoice Amount	Sum of Invoice Amount Paid	Count of Invoice Number Format	First Invoice Number Format
Advanced Network Devices	598160	598160	3	AAA\#\#\#\#\#\#
AND111407	90720	90720	1	AAA\#\#\#\#\#\#
AND111607-O	90720	90720	1	AAA\#\#\#\#\#\#-A
AND1125072	90720	90720	1	AAA\#\#\#\#\#\#\#
AND120507	81500	81500	1	AAA\#\#\#\#\#\#
AND121407	81500	81500	1	AAA\#\#\#\#\#\#
AND121907	81500	81500	1	AAA\#\#\#\#\#\#
AND122607	81500	81500	1	AAA\#\#\#\#\#\#
Total	598160	598160	3	AAA\#\#\#\#\#\#

## Invoice Number Format Test

## Count of Invoice Number Format



## Poll Question 3

## If you would like to receive CPE credit for today's event, you must respond to all polling questions.

Browsers with advanced security may prevent the poll question from popping up - if you are experiencing any difficulties, or have any questions please contact our panel via the 'chat' function and we will assist you.


## Other Pattern Identifications

$\square$ Business processes (order to cash, procure to pay, manufacturing) generally follow predictable patterns
$\square$ Pattern identification is a way to visual represent these predictable patterns and identify unusual divergence from the pattern

## Pattern Identification - Line and Stacked Column Chart

Sum of Credit (Increase), Sum of Debits (Decrease) and Sum of Cumulative Net by Month

- Sum of Credit (Increase) - Sum of Debits (Decrease) © Sum of Cumulative Net

ntries to Accounts Payable Accounts						
Month		Debit	(Decrease)		(Increase)	Cumulative Net
	Jan-20	\$	345,040.00	\$	(165,641.16)	\$ 179,398.84
	Feb-20	\$	341,589.60	\$	(217,375.20)	303,613.24
	Mar-20	\$	320,887.20	\$	(115,933.44)	\$ 508,567.00
	Apr-20	\$	182,871.20	\$	(133,530.48)	\$ 557,907.72
	May-20	\$	72,458.40	\$	( $55,896.48$ )	\$ 574,469.64
	Jun-20	\$	338,139.20	\$	(231,142.30)	\$ 681,466.55
	Jul-20	\$	124,214.40	\$	(78,496.60)	\$ 727,184.35
	Aug-20	\$	200,123.20	\$	(252,396.76)	\$ 674,910.79
	Sep-20	\$	169,069.60	\$	(196,258.75)	\$ 647,721.63
	Oct-20	\$	269,131.20	\$	(149,988.89)	\$ 766,863.95
	Nov-20	\$	320,887.20	\$	(236,455.91)	\$ 851,295.23
	Dec-20	\$	345,040.00	\$	(154,577.92)	\$1,041,757.31
	Jan-21	\$	6,900.80	\$	(88,813.30)	\$ 959,844.82
	Feb-21	\$	20,702.40	\$	(186,149.08)	\$ 794,398.14
	Mar-21	\$	224,276.00	\$	(162,099.79)	\$ 856,574.35
	Apr-21	\$	255,329.60	\$	(84,189.76)	\$1,027,714.19
	May-21	\$	106,962.40	\$	(182,595.17)	\$ 952,081.42
	Jun-21	\$	210,474.40	\$	(80,221.80)	\$1,082,334.02
	Jul-21	5	120,764.00	\$	(228,554.50)	\$ 974,543.52
	Aug-21	\$	148,367.20	\$	(215,304.96)	\$ 907,605.76
	Sep-21	\$	241,528.00	\$	(61,279.10)	\$1,087,854.66
	Oct-21	\$	82,809.60	\$	(15,837.34)	\$1,154,826.92
	Nov-21	\$	272,581.60	\$	(37,195.31)	\$1,390,213.21
	Dec-21	\$	106,962.40	5	$(49,685.76)$	\$1,447,489.85



$\square$ Exploratory data visualizations are a powerful and effective tool to audit the large data sets $\square$ Questions?

